Sáng kiến kinh nghiệm Phương pháp phân tích đa thức thành nhân tử
Trong chương trình toán học phổ thông phân tích đa thức thành nhân tử là một vấn đề đặc biệt quan tâm. Vì nó được sử dụng rất nhiều khi giải toán trên các đa thức, rút gọn phân thức, quy đồng mẫu thức các phân thức, biến đổi đồng nhất các biểu thức hữu tỉ,chứng minh đẳng thức, giải phương trình và xuyên suốt quá trình học tập sau này của học sinh.
Đối với trình độ học sinh THCS, việc trang bị kiến thức có đào sâu suy nghĩ, rèn luyện năng lực tư duy toán học. Phát huy trí lực học sinh là một điều vô cùng quan trọng, nó là cơ sở vững chắc để các em học tập toán học được tốt.
Để phân tích một đa thức thành nhân tử có nhiều phương pháp. Việc tìm ra phương pháp thích hợp cho lời giải một bài toán được ngắn gọn, chính xác, khoa học hay tìm ra nhiều cách giải khác nhau trong một bài toán ...tất cả đều phụ thuộc vào việc tiếp thu và vận dụng kiến thức của học sinh. Khi lựa chọn các phương pháp để phân tích giúp cho học sinh phát triển tư duy toán học, óc tìm tòi sáng tạo, kỹ năng vận dụng kiến thức đã học khi giải một bài toán cụ thể. Không những thế khi phân tích đa thức thành nhân tử học sinh được ôn lại hay sử dụng các kiến thức liên quan như : Hằng đẳng thức, kỹ năng thêm bớt tách các hạng tử, tính nhẩm nghiệm của đa thức..Nói chung ,các thủ thuật toán học để giải bài toán phân tích đa thức thành nhân tử đòi hỏi học sinh phải tư duy nhiều nắm chắc kiến thức và vận dụng linh hoạt , sáng tạo các kiến thức đó.
Tóm tắt nội dung tài liệu: Sáng kiến kinh nghiệm Phương pháp phân tích đa thức thành nhân tử

ng . Hai là : Tách hạng tử không đổi thành hai hạng tử rồi đưa đa thức về dạng hiệu hai bình phương . Ví dụ 2: Phân tích đa thức sau thành nhân tử : 9x2+6x-8 Giải : 9x2+6x-8 =9x2-6x+12x-8 = 3x(3x -2)+4(3x-2) =(3x -2)(3x+4) Hoặc : 9x2+6x-8 =9x2+6x+1 – 9 =(3x+1)2-32 =(3x+1-3)(3x+1+3) =(3x -2)(3x+4) *Chú ý : Khi tách hạng tử bậc nhất thành hai hạng tử ta có thể dựa vào hằng đẳng thức đáng nhớ: mpx2 + (mq +np)x +nq = (mx +n)(px +q) Như vậy trong tam thức bậc hai :ax2+bx+c hệ số b = b1+ b2 sao cho b1. b2 = a.c. Trong thực hành ta làm như sau : Tìm tích a.c Phân tích a.c ra thành tích hai thừa số nguyên bằng mọi cách . Chọn hai thừa số mà tổng bằng b . Ví dụ 3: Khi phân tích đa thức 9x2+6x-8 thành nhân tử Ta có : a = 9 ; b = 6 ; c = -8 Tích a.c =9.(-8) =-72 Phân tích -72 thành tích hai thừa số khác dấu sao cho thừa số dương có giá trị tuyệt đối lớn hơn (để tổng hai thừa số bằng 6) -72 =(-1).72 =(-2).36 = (-3).24 = (-4).12 = (-6).12 = (-8).9 Chọn hai thừa số có tổng bằng 6, đó là -6 và 12 Từ đó ta phân tích 9x2+6x-8 =9x2-6x+12x-8 = 3x(3x -2)+4(3x+4) =(3x -2)(3x+4) Ví dụ 4 : Khi phân tích đa thức x 2 –x -6 thành nhân tử Ta có : a = 1 ; b = -1 ; c = -6 + Tích a.c =1.(-6) = -6 Phân tích -6 thành tích hai thừa số khác dấu sao cho thừa số âm có giá trị tuyệt đối lớn hơn vì b=-1 < 0 (để tổng hai thừa số bằng -1) -6 = 1.(-6) = 2.(-3) Chọn hai thừa số có tổng bằng -1, đó là : 2 và -3 Từ đó ta phân tích x2 -x -6 = x2 + 2x -3x -6 = x(x+2) -3(x+2) = (x+2)(x-3) *Chú ý : Trong trường hợp tam thức bậc hai : ax2 + bx + c có b là số lẻ, hoặc không là bình phương của một số nguyên thì nên giải theo cách một gọn hơn so với cách hai. B. Phương pháp thêm bớt cùng một hạng tử . Khi đa thức đã cho mà các hạng tử trong đa thức đó không chứa thừa số chung, không có dạng của một hằng đẳng thức nào. cũng như không thể nhóm các số hạng thì ta phải biến đổi hạng tử để có thể vận dụng được các phương pháp phân tích đã biết. Ví dụ 5 : Phân tích đa thức x4 + 4 thành nhân tử Giải : Ta thấy x4 =(x2)2 ; 4 = 22 Do đó ta có thể thêm bớt vào đa thức đã cho cùng hạng tử 4x2 x4 + 4 = (x4 + 4 + 4x2)– 4x2= (x2+2)2 – (2x)2 = (x2+ 2x +2)( x2- 2x +2) Ví dụ 6 : Phân tích đa thức 64a4 + b4 thành nhân tử Giải : Ta thấy 64a4 =(8a2)2 ; b4 = (b2)2 Do đó ta có thể thêm bớt vào đa thức đã cho cùng hạng tử 16a2b2 64a2 + b4 = 64a4 + b4 + 16a2b2 - 16a2b2 = (8a2 + b2)2 - (4ab)2 = (8a2 + b2-4ab)( 8a2 + b2+4ab) C . Phương pháp đổi biến số ( Đặt ẩn phụ). Ví dụ 7 : Phân tích đa thức (x2+x)2 + 4x2 + 4x - 12 thành nhân tử Giải : Ta có : (x2+x)2 + 4x2 + 4x - 12 = (x2+x)2 + 4(x2 + x) - 12 Nhận thấy nếu đặt x2 + x = y thì có đa thức đơn giản hơn y2 + 4y -12 là tam thức bậc hai của biến y Ta có : y2 + 4y -12 = y2 +6y - 2y -12 = y(y+6) -2(y+6) = (y+6)(y-2) = (x2 + x+6)( x2 + x -2) =(x2 + x+6)( x2 +2x-x -2) =(x2 + x+6)[x ( x +2)- ( x +2) ] =(x2 + x+6)(x+2)(x-1) *Chú ý : x2 + x+6 không phân tích được nữa trong phạm vi số hữu tỉ (vì tích a.c = 6 = 1.6 =2.3 không có hai thừa số nào có tổng bằng 1 - cách 1 phần I) Ví dụ 8 : Phân tích đa thức (x2+ 3x + 1) (x2+ 3x + 2)- 6 thành nhân tử Giải : Đặt (x2+ 3x + 1) = y Ta có : (x2+ 3x + 1) (x2+ 3x + 2)- 6 =y(y + 1 ) - 6 = y2 + y - 6 = y2 + 3y - 2y - 6 = (y + 3)(y - 2) = (x2+ 3x + 1 +3)( x2+ 3x + 1 -2) = (x2+ 3x + 4)( x2+ 3x -1) ( phương pháp hạ bậc đa thức ) D . Phương pháp tìm nghiệm của đa thức Tổng quát : cho đa thức f(x); a là nghiệm của f(x) nếu f(a) = 0 như vậy nếu f(x) chứa nhân tử x - a thì a phải là nghiệm của đa thức -Trong đa thức với hệ số nguyên, nghiệm nguyên nếu có phải là ước của hạng tử không đổi . -Nếu đa thức có tổng các hệ số bằng 0 thì đa thức chứa nhân tử x-1. -Nếu đa thức có tổng các hệ số của hạng tử bậc chẵn bằng tổng các hệ số bậc lẻ thì đa thức chứa nhân tử x + 1. Ví dụ 9 : Phân tích đa thức x3 + 3x2 -4 thành nhân tử Giải: Nếu đa thức có nghiệm là a thì nhân tử còn lại có dạng x2 + bx +c. Suy ra: a.c = -4, tức là a phải là ước của -4 ( 1; 2; 4). Kiểm tra thấy 1 là nghiện của đa thức. Như vậy đa thức chứa nhân tử x – 1. Do đó ta tách các hạng tử của đa thức làm xuất hiện nhân tử chung x-1 Cách 1: x3 + 3x2 -4 = x3 - x2+ 4x2 -4 = x2(x-1) +4(x-1)(x+1) = (x-1)(x2 +4x+4)= (x-1)(x+2)2 Cách 2: x3 + 3x2 -4 = x3 -1+ 3x2 -3 =(x-1)(x2 + x +1) +3(x-1)(x+1) =(x-1)( x2 + x +1 +3x+3) =(x-1)(x2 +4x+4) = (x-1)(x+2)2 ở ví dụ trên ta càng nhận thấy tổng các hệ số của đa thức là 1+3-4 = 0 nên đa thức chứa nhân tử x-1. Do đó ta tách các hạng tử của đa thức làm xuất hiện nhân tử chung x-1 Ví dụ 10 : Phân tích đa thức 2x3 - 5x2+ 8x-3 thành nhân tử Các ước của -3 là : 1 ; 3 mà 1; 3 không là nghiệm của đa thức. Như vậy đa thức không có nghiệm nguyên. Nhưng đa thức có thể có nghiệm hữu tỉ. *Chú ý : Trong đa thức với số nguyên, nghiệm hữu tỷ nếu có phải có dạng với p là ước của hạng tử không đổi, q là ước dương của hạng tử cao nhất. Như vậy trong đa thức trên nghiệm hữu tỉ nếu có chỉ có thể là : -1 ; - ; - 3 ; - Kiểm tra thấy x= là một nghiệm của đa thức nên đa thức chứa nhân tử x- hay 2x-1 Do đó ta tìm cách tách các hạng tử của đa thức để xuất hiện nhân tử chung 2x-1 Ta có: 2x3 - 5x2+ 8x-3 =2x3 - x2-4x2+2x+6x-3 =x2(2x-1)-2x(2x-1)+3(2x-1) =(2x-1)(x2-2x-3) E . Phương pháp hệ số bất định . Ví dụ 11: Phân tích đa thức 2x3-5x2+8x-3 thành nhân tử Giải : Nếu đa thức tiện phân tích được thành nhân tử thì phải có dạng (ax+b)(cx2+dx+m)=acx3+(ad+bc)x2+(am+bd)x+bm Đồng nhất đa thức này với đa thức đã cho 2x3-5x2+8x-3 , ta được: 2x3-5x2+8x-3 = acx3+(ad+bc)x2+(am+bd)x+bm Suy ra : a.c = 2 ; ad+bc =-5 ; am+bd = 8 ; b.m = -3 Có thể giả thiết a>0 (vì nếu a<0 thì ta đổi dấu cả hai nhân tử). Do đó a=2 hoặc a=1 Xét a=2 thì c=1 suy ra : 2d+b=-5 ; 2m+bd=8 ; bm=-3 => b có thể là 1 hoặc 3 Xét b=-1 thì m=3 => d=-2 thoả mãn các điều kiện trên. => a=2 ; b=-1 ; c=1 ;d=-2 ; m=3 Vậy 2x3-5x2+8x-3 = (2x-1)(x2-2x+3). F . Phương pháp xét giá trị riêng . Ví dụ 12 : Phân tích đa thức P= ab(a-b) + bc(b-c) + ac(c-a) thành nhân tử Giải : Sử dụng phương pháp xét giá trị riêng ta có. Nếu ta thay a bởi b thì P= 0+ bc(b-c) + bc(c-b) =0 ,nên p chia hết cho a-b. vai trò của a,b,c như nhau trong đa thức nên p chia hết cho (a-b)(b-c)(c-a) Trong phép chia đó, đa thức bị chia P có bậc 3 đối với tập hợp các biến và đa thức chia (a-b)(b-c)(c-a) cũng có bậc 3 đối với tập hợp các biến số nên thương là hằng số k ab(a-b) + bc(b-c) + ac(c-a)=k(a-b)(b-c)(c-a) Trong đẳng thức trên cho ta các biến nhận giá trị riêng a=2 ; b=1 ; c=0, ta được : 2.1.1+0 +0 =k.1.1.(-2) 2 = -2k => k=-1 Vậy P = (a-b)(b-c)(c-a) Ví dụ 13 : Phân tích đa thức Q = (a+b+c)3-a3-b3-c3 thành nhân tử Giải : Sử dụng phương pháp xét giá trị riêng ta có. Nếu ta thay a bởi -b thì Q= (0+c)3+b3-b3-c3=0. Vậy Q chia hết cho (a+b). vai trò của a,b,c như nhau trong đa thức nên Q chia hết cho (a+b)(b+c)(c+a) Trong phép chia đó, đa thức bị chia Q có bậc 3 đối với tập hợp các biến và đa thức chia (a+b)(b+c)(c+a) cũng có bậc 3 đối với tập hợp các biến số nên thương là hằng số k (a+b+c)3-a3-b3-c3 = k(a+b)(b+c)(c+a) Cho biến nhận các giá trị riêng a=0; b=1; c=2 . ta có : (0+1+2)3-0 -13-23 = k(0+1)(1+2)(2+0) 18 = 6 k => k=3 Vậy : (a+b+c)3-a3-b3-c3 = 3(a+b)(b+c)(c+a) *Chú ý : Khi đa thức có nhiều biến số và vai trò các biến như nhau trong đa thức thì ta sử dụng phương pháp xét giá trị riêng như trên. Chương III .phát huy trí lực của học sinh qua việc Phân tích đa thức thành nhân tử . A. Bài toán chứng minh sự chia hết . Ví dụ 1 : Chứng minh rằng : x3 - x chia hết cho 3 với mọi số nguyên x. Giải : Ta có P = x3 - x =x(x2 -1) = x(x+1)(x-1) Vì x nguyên nên x+1,x-1 là số nguyên . Do đó: P = (x+1). x .(x-1) là tích của 3 số nguyên liên tiếp sẽ chia hết cho 3 Vậy P 3 x Z. Ví dụ 2 : Chứng minh rằng : x5 - 5x3 + 4x chia hết cho 120 với mọi số nguyên x. Giải : Ta có M = x5 -5x3 + 4x = x(x4-5x2+4)=x( x4- x2-4x2+4) =x[ x2 (x2-1)-4(x2-1)]= x(x2-1) (x2-4) =(x-2)(x-1)x(x+1)(x+2) M Là tích của 5 số nguyên liên tiếp nên M 2;3;4;5 Vì M 2 và M 4 nên M 8 ( 8 là BCNN của 2và 4) Vậy M 8.3.5 =120 ( vì 3;8;5nguyên tố cùng nhau từng đôi một ) Ví dụ 3 : Chứng minh đa thức x3- x2 +x -1 chia hết cho đa thức x-1 Giải : Ta có P = x3- x2 +x -1= x2(x-1)+(x-1) = (x-1)(x2 +1) Đa thức P chứa nhân tử x-1 nên P (x-1) Để giải các bài toán trên tôi đã đi phân tích các đa thức bị chia thành nhân tử ( sử dụng việc phân tích đa thức thành nhân tử ) để biến đa thức chia thành tích sau đó tiếp tục sử dụng các kiến thức về tính chia hết suy ra điều phải chứng minh. Khi chứng minh một đa thức chia hết cho một đa thức khác ta có nhiều cách chứng minh. Vậy ví dụ 3 ta có thể chứng minh bằng cách thực hiện phép chia, số dư bằng 0 có thể dùng lược đồ Hoocme tìm số dư ( dư 0 ). Hoặc chứng minh nghiệm của đa thức chia là nghiệm của đa thức bị chia. Nhưng cách làm đó dài, hoặc đơn điệu hoặc phức tạp hơn so với cách làm trên ( áp dụng phân tích đa thức thành nhân tử ) biến đổi đa thức thành tích khi đó biểu thức đã cho chia hết cho nhân tử cho tích đó đã làm cho phép giải của bài toán nhanh hơn và lời giải thông minh hơn. B. Bài toán chứng minh biểu thức luôn dương, luôn âm, hoặc không âm. Bài toán này kích thích tư duy của học sinh phải đi tìm đường lối giải và khi giải phải nắm được kiến thức: - Biểu thức luôn dương ( lớn hơn 0 ) khi tử thức và mẫu thức cùng dấu . - Biểu thức không âm ( lớn hơn 0 ) khi biểu thức cho bằng luỹ thừa bậc chẵn của biểu thức khác. - Bên cạnh đó cần chú ý với trường hợp biểu thức nguyên ta xét sự luôn luôn dương hoặc luôn âm của biểu thức dựa vào dấu của các nhân tử kết hợp với qui tắc nhân dấu trong dấu nguyên. Ví dụ 1 : Cho biểu thức P = 4x 2 - 12x + 9 . Chứng minh rằng P không âm với mọi x Giải : Ta có P = 4x 2 -12x + 9 = (2x)2-2.2x.3 +(-3)2 = (2x-3)2 0 Vậy P 0 với x . Hay biểu thức P không âm với x. Ví dụ 2 : Chứng minh rằng biểu thức M = không âm với mọi x Giải : Ta có : M = = = = = Vì x2 +x +1 = x2 +x + +=(x+)2 +>0 x Mặt khác (x-1)2 x và x2 +2 > 0 x Vậy M 0 x . Hay M không âm x. Với những bài toán này các em phải phân tích đa thức thành nhân tử hoặc rút gọn biểu thức. Qua đó kỹ năng phân tích của các em được rèn luyện và phát triển cùng với những kỹ năng giải toán khác . C .Bài toán rút gọn và và tính số trị của biểu thức. Đây là bài toán áp dụng gần gũi nhất đối với việc phân tích đa thức thành nhân tử. Đường lối giải là vận dụng tính chất cơ bản của phân thức đại số để thu thành nhân tử sau đó rút gọn thành nhân tử chung. ở đây cơ bản là rèn kỹ năng phân tích đa thức thành nhân tử bên cạnh đó sử dụng một số tính chất toán học khác để giải. Sự kết hợp đó có tác dụng rèn trí tuệ cho học sinh giúp các em thấy sự liên hệ chặt chẽ giữa các kiến thức toán học phát triển trí tuệ thông minh và tư duy logickhoa học ở các em. Ví dụ : Cho P = a/ Rút gọn P Giải P = === ( với x-1; x-7) b/ Tính giá trị của P với x=2001 Giải : P == = D. Bài toán chứng minh đẳng thức Loại toán này đường lối giải là ta phải đi bến đổi, rút gọn biểu thức phức tạp ở vế này đến kết quả là biểu thức đơn giản hơn ở vế kia nhưng cũng có bài ta phải biến đổi rút gọn ở cả hai vế để đi đến 1 kết quả giống nhau. Thực chất của bài toán này là bài toán rút gọn biểu thức. Ví dụ 1: Chứng minh đẳng thức sau : = Giải : Biến đổi VT ta có : VT == ==VP Vậy đẳng thức được chứng minh . Ví dụ 2: Chứng minh đẳng thức sau = Giải Biến đổi VP ta có : VP = = = Biến đổi VT ta có : VT == = VT =VP Vậy đẳng thức được chứng minh. Với học sinh các em rất thích thú với dạng bài tập này vì các em cho rằng đây là dạng toán đã cho sẵn kết quả. E. Bài toán tìm giá trị của biến số để biểu thức có giá trị nguyên . Để giải bài toán này đường lối chung là tách phần nguyên để còn xét phần phân thức ở dạng đơn giản hơn ( Phần lớn các bài toán sau khi rút gọn kết quả chỉ còn phân thức đơn giản hơn ). Tiếp thea ta dùng giá trị tử của biến số để phân thức ấy có giá trị nguyên. Muốn đạt được giá trị nguyên thì tử thức phải chia hết cho mẫu thức hay nói cách khác: Mộu thúc phải là ước của tử thức. Từ đó ta tìm được giá trị của biến. Ví dụ : Cho P = Tìm giá trị của xđể biểu thức có giá trị nguyên. Giải: x+7 = 5 x=-2 P đạt giá trị nguyên x+7 là ước của 5 (1; 5) Do đó x+7 =-1 x=-8 x+7 = 1 x=-6 x+7 =-5 x=-12 Vậy khi biến số nhận một trong các giá trị { -12;-8;-6;-2} thì P đạt giá trị nguyê Theo VD 1 ở IV.3 ta có: P= = IV-kết quả thực hiện có so sánh đối chứng Qua các phương pháp phân tích đa thức thành nhân tử học sinh biết vận dụng các phương pháp đó vào giải các bài toán sao cho nhanh gọn dễ hiểu . Trong SGk và SGV Đại số 8 chỉ đưa ra các phương pháp đó mà không hướng dẫn học sinh vận dụng các phương pháp đó. Do trình độ nhận biết của học sinh khác nhau khi đưa ra các phương pháp đó học sinh khá giỏi tiếp thu rất nhanh còn các em học sinh trung bình ,yếu mới bước đầu tiếp thu được bài ,cũng biết vận dụng các phương pháp nhưng chưa linh hoạt ,các em vẫn bị nhầm ,dài dòng. Sau khi học xong các phương pháp phân tích đa thức thành nhân tử thu được kết quả như sau : Lớp Số học sinh Biết ứng dụng p2PTĐTTNT Chưa biết ứng dụng p2PTĐTTNT Ghi chú Tổng số Tỉ lệ Tổng số Tỉ lệ 8A 38 31 81,6% 7 18,4% 8B 35 30 85,7% 5 14,3% V-những kiến nghị và đề nghị sau quá trình thực hiện đề tài -Đề tài được công nhận kết quả thì có thể phổ biến cho tất cả giáo viên bộ môn Toán áp dụng vào việc giảng dạy cho học sinh . -Phân phối chương trình giảm tải phần kiến thức khác và tăng số tiết phần phương pháp phân tích đa thức thành nhân tử để cho đầy đủ hơn và ứng dụng được nhiều bài toán khác trong chương trình Toán THCS. -Giáo viên chú trọng hướng dẫn học sinh học tập đầy đủ ,nhiệt tình,phát huy tính sáng tạo và chủ động trọng việc làm bài toán . Ngày 20 tháng 05 năm 2012 Giáo viên Hoàng Trung Dương ý kiến nhận xét đánh giá và xếp loại Của hội đồng khoa học cơ sở Ngày tháng năm 2012 Chủ tịch hội đồng đánh giá và xếp loại Của hội đồng khoa học Ngành giáo dục đào tạo huyện ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... Ngày tháng năm 2012 Chủ tịch hội đồng
File đính kèm:
sang_kien_kinh_nghiem_phuong_phap_phan_tich_da_thuc_thanh_nh.doc