Sáng kiến kinh nghiệm Một số phương pháp dạy tiết luyện tập toán 6

Số tiết luyện tập môn Toán THCS chiếm một tỷ lệ khá cao so với tiết học lý thuyết. Trong chương trình cũ, số tiết luyện tập ít nhất cũng chiếm tỷ lệ 1/3 tổng số tiết học. Trong chương trình mới tỷ lệ này còn cao hơn nhiều.

Tiết luyện tập Toán ở cấp THCS có một vị trí hết sức quan trọng không chỉ ở chỗ nó chiếm một tỷ lệ cao về số tiết học mà điều chủ yếu là: Nếu như tiết học lý thuyết cung cấp cho học sinh những kiến thức cơ bản ban đầu thì tiết luyện tập có tác dụng hoàn thiện các kiến thức cơ bản đó, nâng cao lý thuyết trong chừng mực có thể, làm cho học sinh nhớ và khắc sâu hơn những vấn đề lý thuyết đã học. Đặc biệt hơn trong tiết luyện tập học sinh có điều kiện để thực hành, vận dụng các kiến thức đã học vào việc giải quyết các bài toán thực tế, các bài toán có tác dụng rèn luyện kỹ năng tính toán, rèn luyện các thao tác tư duy dể phát triển năng lực sáng tạo sau này.

docx 26 trang Hương Thủy 23/03/2025 280
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm Một số phương pháp dạy tiết luyện tập toán 6", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Sáng kiến kinh nghiệm Một số phương pháp dạy tiết luyện tập toán 6

Sáng kiến kinh nghiệm Một số phương pháp dạy tiết luyện tập toán 6
m các số nguyên tròn chục, tròn trăm ...vào một ngoặc rồi tính 
Mỗi cách giải là một phương hướng khác nhau, giáo viên có thể gợi ý để học sinh tìm ra nhiều cách giải. Việc tìm ra nhiều cách giải của một bài toán tất nhiên phải đưa đến đòi hỏi học sinh phải so sánh các kết quả đó, để tìm ra lời giải hay nhất, ngắn gọn nhất, mở đường cho sự sáng tạo phong phú .
*) Trong tiết luyện tập, giáo viên cần quan tâm đến việc rèn luyện cho học sinh khả năng chuyển dễ dàng, nhanh chóng từ tư duy thuận sang tư duy nghịch để học sinh nắm vững hơn nội dung kiến thức đã được học ở tiết trước. 
SGK toán mới rất quan tâm đến vấn đề này do đó giáo viên cần chú ý chọn các bài tập theo hướng đấy.
 Ví dụ 1 : Tiết 24- “luyện tập ” 
(sau bài “Dấu hiệu chia hết cho 3, cho 9”)- Toán 6
 Giáo viên yêu cầu học sinh làm bài tập 
Bài 104 (trang 42 SGK): Điền chữ số vào dấu * để :
	a, chia hết cho 3
	b, chia hết cho 9
Mục đích: Biết một số chia hết cho 3, cho 9 thì tổng các chữ số của nó phải chia hết cho 3, cho 9
Nếu nắm được điều nay thì học sinh sẽ dễ dàng tìm được :
	a, * = 2; 5; 8
	b, * = 0; 9
Bài 105 (trang 42 SGK): Dùng ba trong bốn chữ số 4; 5; 3; 0 ghép thành các số có ba chữ số sao cho các số đó
	a. Chia hết cho 9 
	b. Chia hết cho 3 mà không chia hết cho 9
Bài tập này đòi hỏi học sinh phải cộng tổng ba chữ số trong bốn số 4; 5; 3; 0 nếu tổng nào chia hết cho 9 thì lập được số chia hết cho 9 
Học sinh tìm được đáp số : 
	a.450; 540; 405; 504;
	b. 453; 435; 345; 354; 543; 534
Ví dụ 2: Tiết 67 – “Luyện tập ”
	(sau tiết 66 : “Tính chất của phép nhân ”- toán 6)
	Giáo viên yêu cầu học sinh làm bài tập 99 (Trang 96 SGK): áp dụng tính chất : 
a(b - c) = ab - ac , Điền số thích hợp vào ô trống :
	a. 	. (-13) + 8 . (-13) = ( -7 + 8) . (-13) = 
	b. (-5). (-4 - ) = (-5). (-4) - (-5) . (-14) = 	
	Mục đích : Sử dụng tính chất: a(b – c) = ab – ac, biết nếu có ab – ac thì có thể viết thành: a(b – c). Suy luận như vậy nhanh chóng tìm ra kết quả :
 a. (-7) ; (- 18)	b. (-14) ; (-50)
*) Xen vào các tiết luyện tập sau khi chữa bài tập giáo viên nên tổ chức các trò chơi giữa các nhóm học tập bằng nhiều hình thức phong phú , góp phần tăng thêm tinh thần đoàn kết giữa học sinh trong lớp, giảm tính chất căng thẳng của tiết học toán . Thông qua các bài tập “đố”, “thi ghép chữ”, “thi tính nhanh”  học sinh lĩnh hội kiến thức nhanh hơn và nhớ kiến thức lâu hơn .
Ví dụ 1 : Tiết 83 “Luyện tập ”
	( sau tiết 82 – “Phép cộng phân số ” ) - toán 6
 Giáo viên tổ chức “Trò chơi tính nhanh ”( bài 62b SBT toán 6 tập 2 )
 Hoàn chỉnh bảng sau : (đề ghi trên hai bảng phụ )
 




-1
 






	 Bảng 2.1
Tiến hành cho một đội nam và một đội nữ chơi. Mỗi đội cử 5 bạn, mỗi bạn được quyền điền kết quả vào một ô rồi chuyền phần cho bạn tiếp theo. Thời gian chơi trong 3 phút. 
	Kết thúc giáo viên cho cả lớp nhận xét và thưởng cho đội thắng cuộc. 
Ví dụ 2: Tiết 85 - “Luyện tập ”
	( Sau tiết 84 : “Tính chất cơ bản của phép cộng phân số )
	Giáo viên có thể cho học sinh tiến hành làm phiếu học tập theo nhóm (bài tập 55 trang 30 SGK toán 6 tập 2 )
+
























	 Bảng 2.2
Luật chơi : Mỗi ô điền đúng được một điểm, kết quả chưa rút gọn trừ 0,5 điểm . Nhóm nào phát hiện được những kết quả giống nhau điền nhanh sẽ được thưởng 2 điểm . Thời gian là 5 phút . Giáo viên khen thưởng đội thắng cuộc. 
Ví dụ 3: Tiết 16 “Luyện tập ”( Sau tiết 15 “ Thứ tự thực hiện các phép tính” – toán 6) Giáo viên ra câu đố (bài tập 82 SGK ):
 Cộng đồng các dân tộc Việt Nam có bao nhiêu dân tộc ? Có thể học sinh đưa ra nhiều ý kiến, để biết kết quả chính xác học sinh tiến hành tính giá trị của biểu thức 34 – 33, kết quả chính là câu trả lời (54 dân tộc )
	Tuy nhiên, việc tiến hành tổ chức các trò chơi trong giờ học đòi hỏi giáo viên phải linh hoạt, điều khiển tốt, nếu không tiết học trở thành lộn xộn, học sinh có thể cãi nhau, gây ảnh hưởng đến các lớp xung quanh.
*) Chú trọng rèn luyện kỹ năng sử dụng MTBT ở học sinh , để giảm nhẹ những khâu tính toán không cần thiết. 
	Thời đại hiện nay là thời đại của tin học, mọi thông tin cần thiết đều được truy cập hàng ngày trên mạng Internet. Để có thể đáp ứng được và theo kịp xu thế đó, bản thân mỗi học sinh cần được trang bị khả năng sử dụng MTBT thành thạo, để có thể thực hiện các phép tính : cộng, trừ, nhân, chia, luỹ thừa, trên các tập số; tính giá trị các biểu thức .học sinh biết sử dụng các phím nhớ, lưu ở đây học sinh có thể sử dụng MTBT Casio FX- 500a, Casio FX-570ES  Và bản thân giáo viên phải thường xuyên cập nhật những chức năng mới của các loại máy tính cầm tay.
	Ví dụ 1 : Tiết 16 “Luyện tập ”
	(Sau tiết 15 “Thứ tự thực hiện các phép tính ”- toán 6)
Giáo viên hướng dẫn học sinh sử dụng MTBT thông qua bài tập 81 SGK/33
M+
M-
	- Để thêm số vào nội dung bộ nhớ, ta ấn nút : 
- Để bớt số vào nội dung bộ nhớ, ta ấn nút
MR
- Để gọi lại nội dung ghi trong bộ nhớ, ta ấn nút
Biểu thức
Nút ấn 
Kết quả 
(8 – 2). 3
8
-
2
x
3
=

18
3. (8 – 2 )
Thực hiện như dòng trên

2 . 6 + 3 . 5
2
x
6
M+
3
x
5
M+
MR

27
	Nếu giáo viên trong tiết luyện tập dùng MTBT hướng dẫn học sinh chức năng của các nút bấm trên và thực hành mẫu thì học sinh sẽ tính các biểu thức trên một cách dễ dàng, không mất nhiều thời gian . Bên cạnh đó giáo viên có thể gọi một học sinh tính kết quả thứ nhất bằng cách tự cộng và nhân bằng bút, một học sinh khác tính bằng máy tính bỏ túi để học sinh thấy được công dụng của việc tính khi sử dụng máy tính bỏ túi. Giáo viên cũng cần nhắc nhở học sinh không nên quá lạm dụng máy tính bỏ túi vào tính toán, ảnh hưởng đến khả năng tính nhẩm, tính nhanh của các em, ỷ lại máy tính không học các quy tắc, công thức để tính. Việc chuẩn bị dạy tiết luyện tập, điều quan trọng là phải bám sát tư tưởng chủ đạo là hoàn thiện hệ thống kiến thức (ở mức độ cho phép), rèn luyện kỹ năng, thuật toán , rèn luyện nề nếp học tập.
	Để đảm bảo phát huy tối đa hoạt động của giáo viên và học sinh tránh 
sự đơn điệu thụ động như các tiết luyện tập toán trước đây. Giáo viên cần tìm tòi , thiết kế hệ thống các câu hỏi, kèm theo bài tập để kiểm tra nhận thức của học sinh, tạo tình huống mới về kiến thức đã học, kích thích hứng thú học tập của học sinh .
	Hệ thống các câu hỏi, bài tập đó gắn với các biện pháp kỹ thuật của người giáo viên làm cho tiết học sinh động hơn, làm cho học sinh nắm kiến thức sâu sắc hơn.
	Ví dụ 2 : dạy tiết 90 “Luyện tập ” – toán 6
	(Sau tiết 89 “Tính chất cơ bản của phép nhân phân số ”)
Mục tiêu của tiết này là : 
 Kiến thức: - Củng cố và khắc sâu phép nhân phân số, các tính chất cơ bản của phép nhân phân số.
 Kỹ năng : - Vận dụng linh hoạt các kiến thức đã học về phép nhân phân số và các tính chất cơ bản của phép nhân phân số để giải toán. 
 Thái độ: - Giáo dục sự yêu thích môn toán, học tập gương nhà toán học Việt Nam.
	Vì vậy, giáo viên có thể tiến hành theo trình tự sau:
Bước 1: - Giáo viên yêu cầu học sinh làm bài tập giao về nhà để kiểm tra sự vận dụng lý thuyết vào làm bài tập của học sinh (bài 75, 76 SGK/ 39 toán 6 tập 2)
	Bài 75 (Đề bài ghi trên bảng phụ) và cho học sinh lên điền vào ô trống 
x
























 Bảng 2.4
 (Học sinh điền được : ; ; ; )
- HS lên bảng điền vào 3 ô ở hàng ngang thứ hai:
Giáo viên từ kết quả của 3 ô ở hàng ngang thứ hai ta điền được ngay các ô nào ? vì sao?
Học sinh điền được ngay ba ô ở cột thứ hai, do áp dụng tính chất giao hoán của phép nhân. Giáo viên: nêu tính chất giao hoán.
Bước 2: Nắm được sự tiếp thu kiến thức của học sinh thông qua bước 1, giáo viên chốt lại các vấn đề sau :
- Với mỗi bài tập, có thể có nhiều cách giải khác nhau. Vì vậy cần quan sát kỹ các phân số (trong bảng hay biểu thức có quan hệ với nhau như thế nào) rồi suy nghĩ, tính nhẩm sẽ tìm được cách giải hợp lý nhất . Do đó, trong học tập cũng như trong cuộc sống, ta luôn tìm cách giải quyết công việc một cách hợp lý. 
Bước 3: Giáo viên tiến hành cho học sinh làm một số bài tập mới để rèn luyện tính thông minh.
Bài tập: Tính giá trị của biểu thức sau (bằng hai cách )
A = 24 . (
Giáo viên : Bài tập có mấy cách làm ? em chọn cách nào? vì sao?
Học sinh : có hai cách làm :
 Cách 1: Thực hiện phép tính trong ngoặc trước , ngoài ngoặc sau 
 Cách 2: Sử dụng tính chấp phân phối của phép nhân đối với phép cộng 
Giáo viên : Ta thấy 24 là bội chung của 6 và 8, khi đó nếu sử dụng tính chất phân phối của phép nhân đối với phép cộng để tính thì bài toán trở nên đơn giản hơn
Giáo viên tổ chức “ Trò chơi thi ghép chữ ” (bài 79 SGK/40 toán 6 tập 2 )
Giáo viên yêu cầu học sinh họạt động nhóm thể hiện đầy đủ kết qua phép tính và ghép chữ hoàn chỉnh vào các ô trống 
Giáo viên giới thiệu sơ lược về nhà toán học : Lương Thế Vinh 
Trong sách bài tập toán 6, còn có rất nhiều bài tập để phát hiện học sinh khá giỏi. Ở tiết luyện tập này nếu có thời gian giáo viên có thể giao bài 94 trang 19 SBT toán 6 tập 2 
	Tóm lại, khi dạy tiết luyện tập toán, giáo viên cần phải lưu ý : suy nghĩ tìm cách giải, tìm những cách giải khác nhau (nếu có) và chọn cách hay nhất để giải và từ đó hướng dẫn học sinh làm theo. Trên cơ sở thiết kế hệ thống câu hỏi khai thác bài toán, tổng quát hoá, tương tự và mở rộng bài toán. Đồng thời, giáo viên cần phải quan tâm sửa chữa các sai sót học sinh thường gặp như : Vẽ hình thiếu chính xác, lập luận chứng minh không chặt chẽ  trong hình học; nhầm lẫn trong việc sử dụng các phép toán, áp dụng nhầm lẫn các quy tắc toán học .
3. Hiệu quả giải pháp
Kết quả nghiên cứu tính hiệu quả so với cách làm cũ :
 Sau 2 năm học, tiến hành dạy tiết luyện tập theo phương pháp này, bản thân là giáo viên toán được tham gia dự chuyên đề ở các trường THCS trên địa bàn huyện và được trực tiếp dạy toán 6, tôi đã tìm tòi học hỏi và vận dụng phương pháp nêu trên vào quá trình giảng dạy bước đầu mang lại hiệu quả rõ rệt .
Qua kiểm tra đánh giá học sinh lớp 6 ở 3 mức độ: Nhận biết, thông hiểu, vận dụng. Tôi đã thấy được chất lượng học sinh đang có sự chuyển biến, các em dần dần làm quen được cách làm mới, giờ học sôi nổi hơn . 
Qua thăm dò ý kiến của học sinh thì tiết học toán – luyện tập có áp dụng phương pháp trên thì học sinh rất thích , hăng say phát biểu ý kiến. Còn tiết luyện tập theo hướng cũ học sinh không mấy hứng thú, giờ học buồn tẻ dẫn đến học sinh ngại học toán .
Kết quả khảo sát chất lượng: Kết quả kiểm tra chương ở lớp 6A trường THCS Phạm Hồng Thái năm học 2014- 2015 như sau: 
Lớp
Tổng số HS 
Điểm 0 2 
Điểm 2 5
Điểm Trung bình 
Điểm Khá + giỏi 
SL 
% 
SL 
% 
SL 
% 
SL 
% 
6A
35 
5 
14,3
10 
28,6 
15 
42,9
5
14,2
6B
34
6
17,6
10
29,4
14
41,2
4
11,8
 Bảng 3.1
 Kết quả trên cho thấy, có đến 42,05 % học sinh điểm yếu kém so với chỉ tiêu chất lượng đầu năm xây dựng, tỷ lệ học sinh yếu kém cao, học sinh trung bình trở lên và học sinh khá, giỏi còn thấp. Chính vì vậy, bản thân tôi đã trăn trở, suy nghĩ tìm ra phương pháp dạy học phù hợp hơn để nâng cao chất lượng dạy học bộ môn. Tôi đã thử áp dụng một số biện pháp để tiết luyện tập đạt hiệu quả, đó là: 
 + Yêu cầu học sinh nắm chắc phần kiến thức. 
 + Trong tiết luyện tập chọn giải tại lớp một số bài tập cần thiết. 
 + Mỗi bài tập thường thực hiện qua 4 bước: Tìm hiểu đề bài, tìm tòi lời giải, trình bày lời giải, nghiên cứu thêm về lời giải. 
 + Ra thêm một số bài tập ở ngoài. 
 Nhờ đó chất lượng kiểm tra cuối năm đạt cao hơn. 
 Đầu năm học 2015 - 2016, sau khi dạy tiết luyện tập về tia phân giác của góc tôi cho học sinh lớp 6A trường THCS Phạm Hồng Thái kiểm tra bài 15 phút. Đề bài là một bài tập vận dụng tính chất tia phân giác của một góc. Kết quả cho thấy số học sinh đạt điểm khá giỏi cao (40 %), không có học sinh đạt điểm yếu, kém. Cụ thể như sau: 
Lớp 
Tổng số học sinh 
Điểm 0 2 
Điểm 2 5 
Điểm trung bình
Điểm khá giỏi 
SL 
% 
SL 
% 
SL 
% 
SL 
% 
6A
35 
0
0
3 
8,6
18
51,4
14
40 
6B
34
0
0
4
11,8
17
50
13
38,2
 Bảng 3.2
 Như vậy nếu không thay đổi phương pháp và đưa ra giải pháp cụ thể có lẽ kết qủa môn toán thấp hơn nữa. Vì thế, tôi tiếp tục áp dụng các biện pháp dạy học tiết luyện tập đã thử nghiệm ở năm học trước và suy nghĩ tìm thêm các biện pháp dạy học phù hợp nhằm mục đích giúp học sinh có hứng thú trong việc học môn toánvà nâng cao chất lượng dạy học bộ môn. 
4. Kết luận và đề xuất, kiến nghị
4.1 Kết luận :
Muốn có phương pháp dạy tốt, giáo viên cần phải:
- Phân dạng bài tập.
- Hướng dẫn học sinh biết phân tích đề bài: điều kiện cho, yêu cầu tìm.
- Hướng dẫn học sinh cách tìm tòi cách giải bài toán (có khả năng quan sát, khả năng lập luận, khả năng suy luận tổng hợp các kiến thức lý thuyết cần thiết cho bài giải).
- Kĩ năng sắp xếp trình tự khi trình bày lời giải một cách khoa học, chặt chẽ, chính xác.
- Qua mỗi dạng bài, yêu cầu học sinh phải nêu rõ được các bước đã làm. Từ đó chốt vấn đề đối với từng dạng bài thì nên sử dụng phương pháp nào là hợp lí nhất. Qua đó các em tiếp thu kiến thức một cách sáng tạo, rèn kỹ năng tư duy, óc suy luận cho học sinh.
- Tiết luyện tập không phải là tiết chữa bài tập.
- Tiết luyện tập phải là tiết dạy cách suy nghĩ giải toán .
- Lượng bài tập vừa phải để có điều kiện khắc sâu các kiến thức được vận dụng và phát triển các năng lực tư duy cần thiết trong giải toán .
 - Các bài tập sắp xếp thành chùm có liên quan với nhau . 
- Trong tiết luyện tập phải có những bài giải mang tính chất mẫu mực , có những bài chỉ giải vắn tắt. Chú ý vận dụng các kết quả của bài tập trước vào bài tập sau nếu có thể được.
- Học sinh có thời gian làm quen với bài toán, cùng nghiên cứu tìm tòi lời giải toán và để học sinh được hưởng niềm vui khi tự mình tìm được chìa khoá của lời giải.Sau tiết luyện tập học sinh được củng cố khắc sâu lý thuyết và các kiến thức trọng tâm và được rèn luyện kỹ năng giải toán .
4.2 Đề xuất, kiến nghị 
 Qua kết quả nghiên cứu trên tôi nhận thấy “Một số phương pháp dạy tiết luyện tập toán 6” có thể áp dụng được cho học sinh cả khối 6 của trường.. 
- Để trang bị cho học sinh một kiến thức cơ bản vững chắc và quan trọng là các em tự tin không còn phải sợ môn toán, đây chính là tiền đề để các em học tốt môn toán ở các lớp trên.
Nếu có điều kiện tôi sẽ nghiên cứu tiếp đề tài này ở các năm sau nhằm ngày càng hoàn thiện hơn về phương pháp giảng dạy của bản thân và nhằm góp phần nâng cao chất lượng bộ môn toán nói chung.
 Trên đây là phần trình bày kinh nghiệm giảng dạy về “Một số phương pháp dạy tiết luyện tập toán 6” mà tôi đã áp dụng hướng dẫn học sinh trong năm học này mặc dù có mang lại kết quả khả quan. Tuy nhiên chắc chắn còn những giải pháp khác để học sinh học tốt hơn mà bản thân cần phải học hỏi . Nhưng do thời gian và khả năng còn nhiều hạn chế nên rất mong sự đóng góp ý kiến của quý đồng nghiệp để đề tài đạt hiệu quả hơn trong tương lai.
TÀI LIỆU THAM KHẢO
Phan Đức Chính(2012), sách giáo khoa toán 6, tập 1 và tập 2, tr 37 -61
Hoàng Ngọc Diệp(2003), sách thiết kế bài giảng toán 6, tập 1 và tập 2, tr 63 -97
Vũ Hữu Bình (2009) ,sách nâng cao và bồi dưỡng toán 6, tập 1 và tập 2, tr34 -90
Nhà xuất bản giáo dục( 2007), “Những vấn đề chung về đổi mới giáo dục Trung học cơ sở môn toán 6 

Nhận xét của hội đồng khoa học trường THCS Phạm Hồng Thái:	

File đính kèm:

  • docxsang_kien_kinh_nghiem_mot_so_phuong_phap_day_tiet_luyen_tap.docx