Sáng kiến kinh nghiệm Một số biện pháp khắc phục những sai sót khi giải toán liên quan đến bội và ước ở lớp 6 - Nguyễn Thị Ngọc Mỹ
Hiện nay với sự phát triển mạnh mẽ của đất nước, đặc biệt là sự phát triển như vũ bão của khoa học kĩ thuật. Theo hướng đó, ngành giáo dục phải thay đổi tầm nhìn và phương thức hoạt động là yêu cầu tất yếu vì sản phẩm của giáo dục là nhân cách của con người. Nó quyết định vận mệnh tương lai của một đất nước, điều này thể hiện rõ: “Coi giáo dục và đào tạo là quốc sách hàng đầu cùng với khoa học công nghệ là yếu tố quyết định góp phần phát triển khoa học và xã hội”. Do đó cần phải đổi mới căn bản, toàn diện nền giáo dục và đào tạo của Việt Nam theo hướng chuẩn hóa, hiện đại hóa, xã hội hóa, dân chủ hóa và hội nhập quốc tế.
Trong giáo dục, môn toán có một vị trí quan trọng. Trong nhà trường các tri thức toán giúp học sinh học tốt các môn học khác, trong đời sống hàng ngày thì có được các kĩ năng tính toán, vẽ hình, đọc, vẽ biểu đồ, đo đạc, ước lượng,... từ đó giúp con người có điều kiện thuận lợi để tiến hành hoạt động lao động trong thời kì công nghiệp hóa và hiện đại hóa đất nước.
Tóm tắt nội dung tài liệu: Sáng kiến kinh nghiệm Một số biện pháp khắc phục những sai sót khi giải toán liên quan đến bội và ước ở lớp 6 - Nguyễn Thị Ngọc Mỹ

ký hiệu nên dẫn đến sai sót trong trình bày.Đại bộ phận học sinh yếu và trung bình yếu. Ví dụ 1: Bài tập 136/ 53 SGK tập 1. Học sinh ghi tập hợp A các số tự nhiên nhỏ hơn 40 là bội của 6: A = 0; 6; 12; 18; 24; 30; 36 mà không dùng dấu ngoặc nhọn để chỉ tập hợp A Hoặc giữa các phần tử bằng số mà học sinh chỉ ghi dấu phẩy (,) mà không ghi dấu chấm phẩy (;) như A = {0, 6, 12, 18, 24, 30, 36 } Hoặc thiếu dấu bằng “ = ” chẳng hạn như: Viết tập hợp B các số tự nhiên nhỏ hơn 40 là bội của 9. B {0; 9; 18; 27; 36 } hoặc ghi ký hiệu tập hợp bằng chữ in thường b = {0; 9; 18; 27; 36 } - Phần đông học sinh sử dụng không thành thạo các ký hiệu: ; ; ; Chẳng hạn: ƯC ( 4; 6 ) = Ư ( 4 ) Ư ( 6 ) ( sai dấu ) hay thay vì ghi 6 ƯC ( 12; 18 ) học sinh lại ghi 6 ƯC (12;18 ) hay tập hợp M là tập hợp con của tập hợp A thì học sinh lại ghi M A hay M A Biện pháp: Để khắc phục những sai sót trên, đây là sai sót đáng tiếc, giáo viên cần thường xuyên cho học sinh sử dụng các ký hiệu toán học quen thuộc này thông qua các bài tập trắc nghiệm: Phân biệt cách ghi đúng sai, tìm chỗ sai và sửa sai trong cách ghi hoặc thông qua một số phản ví dụ nhằm giúp các em khắc sâu các ký hiệu toán học và tránh được một số nhầm lẫn đáng tiếc.Cần giải thích thấu đáo để các em hiểu đó là quy định bắt buộc không thể thay đổi.Giải thích rõ quan hệ giữa phần tử với tập hợp chỉ có thể là: phần tử thuộc “” hoặc không thuộc “” tập hợp. Còn quan hệ giữa tập hợp và tập hợp là: tập hợp này là con của tập hợp kia hoặc tập hợp này bằng tập hợp kia. Trong từng tiết dạy cần cho các em tự tìm cái sai và sửa sai qua từng chi tiết nhỏ nhất dần tạo cho các em thói quen cẩn thận trong quá trình giải toán. b) Sai sót do cẩu thả, thiếu tính cẩn thận chính xác khi làm bài: Khi giải các bài tập về tìm ƯCLN hoặc BCNN, học sinh trung bình, trung bình khá thường mắc phải sai sót nhiều nhất là tính toán không cẩn thận kể cả trong phép chia cho số có một chữ số. Chẳng hạn phân tích số 420 ra thừa số nguyên tố, học sinh sẽ ghi: Ví dụ 2 420 2 210 2 15(sai) Sai do chia 210 cho 2 bị sai vì học sinh thiếu tính cẩn thận, cẩu thả trong quá trình tính toán. Hoặc phân tích số 45 ra thừa số nguyên tố, học sinh thực hiện: 3 15 1 Sai do các em không chia cho ước các thừa số nguyên tố mà thực hiện phép chia hết. Hoặc BCNN (8; 18; 30 ) = 23 . 32 . 5 = 6 . 9 . 5 = 270 ( Sai do học sinh tính toán sai 23 =6 ) Biện pháp: Với những sai sót này đòi hỏi giáo viên phải nhắc nhở học sinh cẩn thận với từng con số, từng phép tính, khi thực hiện xong mỗi một phép tính, mỗi một bài toán các em cần “ dò ” lại bài, có thể qua phép toán ngược hoặc làm lại lần hai xem có nhầm lẫn con số, phép tính nào không ? Việc làm này cần được tập thành thói quen thường xuyên khi giải toán. Thông qua các bài tập ở bảng lớp trong từng tiết dạy giáo viên cũng hướng dẫn sửa sai tương tự để học sinh dần đi vào nếp, dần dần tạo được tính cẩn thận, chính xác. c) Sai sót do không nắm vững hệ thống kiến thức: Khi tìm ƯCLN và BCNN của 2 hay nhiều số, ngoài việc mắc phải những sai sót như đã nói ở trên học sinh còn khá nhiều sai sót cơ bản do không nắm vững hệ thống kiến thức. Chẳng hạn cách viết ký hiệu ƯCLN và BCNN, học sinh vẫn còn nhầm lẫn giữa hai ký hiệu này do không hiểu rõ bản chất của ƯCLN là “ số lớn nhất trong tất cả các ƯC ” hoặc BCNN là “ số nhỏ nhất khác 0 trong các BC ”. Sau khi học bài ƯCLN và BCNN, học sinh vẫn không vận dụng được cách tìm ƯC thông qua ƯCLN hoặc BC thông qua BCNN mà vẫn giữ thói quen tìm ƯC hoặc BC qua các bài trước vừa mất nhiều thời gian vừa không liên kết kiến thức. Khi tìm ƯCLN và BCNN, học sinh còn mất khá nhiều công sức khi phân tích một số ra thừa số nguyên tố do không nắm vững sàng Ơ- ra –tô- xten, không thuộc các số nguyên tố nhỏ hơn 100. Do không hệ thống được kiến thức, phân biệt được sự giống và khác nhau giữa cách tìm ƯCLN và BCNN nên học sinh mắc rất nhiều sai sót khi tìm ƯCLN và BCNN dẫn đến những sai sót đáng tiếc sau này khi giải bài toán giải liên quan đến bội và ước và tìm mẫu số chung ở phần phân số. * Một số ví dụ cụ thể: Ví dụ 3: Bài tập 142/56 SGK toán 6 tập I Tìm ƯCLN rồi tìm ƯC của 60; 90; 135. Bài giải: Bước 1: 60 = 22.3.5; 90 = 2.32.5; 135 = 33. 5. Bước 2: ƯCLN ( 60; 90; 135) 3.5=15 Bước 3; ƯC ( 60; 90; 135) = Ư(15) = {1; 3; 5; 15} Học sinh sẽ mắc sai sót: Bước 1: Nhiều em còn yếu sẽ rất lúng túng và không phân tích được các số ra thừa số nguyên tố do không nắm các số nguyên tố. Bước 2: Học sinh sẽ sai sót vì không biết phải chọn thừa số nguyên tố chung hay riêng, số mũ lớn nhất hay số mũ nhỏ nhất vì không nắm vững quy tắc tìm ƯCLN và BCNN. Bước 3: Rất nhiều học sinh sẽ không đi theo bước 3 mà quay lại lần lượt tìm Ư(60), Ư(90), Ư(135) rồi tìm giao của 3 tập hợp ước đó theo cách làm ở bài 16 vừa tốn nhiều công sức vừa rất dễ gặp sai sót, hoặc một số em biết cách làm nhưng lại rất lúng túng trong trình bày thậm chí là trình bày sai. Biện pháp: Đối với việc học sinh không nắm được hệ thống các số nguyên tố nhỏ hơn 100 thì giáo viên có thể bắt buộc từng đôi bạn hoặc nhóm học tập tự kiểm tra và báo cáo kết quả. Hoặc khi dạy về phần số nguyên tố, sau tiết học có thể tổ chức một trò chơi nhỏ vui: Điền số nguyên tố còn thiếu vào bảng theo yêu cầu của đề bài. Học sinh sẽ rất hào hứng tham gia, vừa gây hứng thú học tập vừa khắc sâu kiến thức cho các em. Sai sót do không biết cách tìm ƯCLN và BCNN: Đây là sai sót rất thường gặp.Vì vậy sau hai bài học này, giáo viên cần cho học sinh tự so sánh hai cách tìm để tìm ra điểm giống và khác nhau giữa hai quy tắc. Đồng thời cũng thường xuyên củng cố hai quy tắc này qua các bài tập củng cố. Nhấn mạnh những sai sót thường gặp đó và nói rõ tác hại nguy hiểm của các sai sót đó. Yêu cầu mỗi em lập bảng so sánh dán ngay đầu trang bìa vở để thường xuyên đập vào mắt các em giúp các dễ nhớ kiến thức. Riêng với cách tìm ƯC và BC thông qua ƯCLN và BCNN: Sau khi học lý thuyết giáo viên cho các em thực hành một số ví dụ sau khi đã có một bài giải mẫu. Đưa ra cho các em lời khuyên “ từ bài này trở đi ta không cần tìm ƯC và BC bằng cách làm như ở bài 16 ” Ví dụ 4: Bài tập 152/ 59 SGK toán 6 tập 1. Tìm số tự nhiên a nhỏ nhất khác 0 biết a 15 và a 18. Do không nắm được định nghĩa về BCNN và định nghĩa BC, học sinh sẽ không biết được đề bài yêu cầu tìm cái gì và chắc chắn sẽ không giải được bài toán. Biện pháp: Đứng trước khó khăn này của học sinh chúng ta cần biết tháo gỡ khúc mắc cho các em qua hệ thống câu hỏi gợi mở đơn giản mà cụ thể vừa hệ thống kiến thức lại cho các em vừa giúp các em giải được bài như: + a 15 và a 18 thì a được gọi là gì của 15 và 18 ? + a lại là số tự nhiên nhỏ nhất khác 0. Vậy a cần tìm này là gì ? . Từ các câu hỏi đó học sinh dễ dàng lập luận và giải được bài toán. Tóm lại: Đối với những bài toán có các bước giải cụ thể, giáo viên cần cho học sinh nắm vững “ thuật toán ” qua từng bước giải, rèn luyện từng bước rồi mới ráp vào bài toán, làm đi làm lại nhiều lần sau khi giáo viên đã giải bài toán mẫu. d) Sai sót do không lập luận, lập luận không có căn cứ khi trình bày bài toán Trong trình bày bài toán bằng lời học sinh thường thiếu chính xác, lập luận không chặt chẽ, thiếu căn cứ, không có cơ sở toán học. Nguyên nhân là khả năng tư duy của các em chưa cao, phụ thuộc vào lứa tuổi. * Một số ví dụ: Ví dụ 5: Bài tập 146/ 57 SGK toán 6 tập 1. Tìm số tự nhiên x biết rằng 112 x; 140 x và 10 < x < 20. Rất nhiều học sinh nhẩm tìm từng số nhưng khi hỏi lý do vì sao có các số đó thì học sinh rất lúng túng không thể trả lời được. Nguyên nhân là do các em chưa biết cách lập luận bài toán để giải thích cho lôgích. Biện pháp: Đối với sai sót này, giáo viên cần chỉ cho các em biết cách xoáy sâu vào yêu cầu của đề, lập luận theo những điều đề đã cho để không đi lệch hướng hoặc giải bài toán chỉ có kết quả mà không qua một bước lập luận nào.Giáo viên có thể hướng dẫn cho học sinh tập lập luận qua một số câu hỏi gợi mở: + x N; 112 x; 140 x như vậy x là gì ? + 10 < x < 20, vậy thì những số nào là số cần tìm ? Ví dụ 6. Bài tập 154/ 59 SGK toán 6 tập 1 Học sinh lớp 6C khi xếp hàng 2, hàng 3, hàng 4, hàng 8 đều vừa đủ. Biết số học sinh lớp đó trong khoảng từ 35 đến 60. Tính số học sinh của lớp 6C ? Sai sót: Do không nắm vững “ thuật toán”, không nắm vững cách giải bài mẫu, thiếu sáng tạo, chắc chắn sẽ có khá nhiều học sinh lập luận không chặt chẽ bài toán hoặc thiếu một trong các bước giải cơ bản mặc dù vẫn tìm ra đáp số của bài toán nhưng chất lượng bài toán không cao. Chẳng hạn: - Không có bước gọi chữ (a) thay giá trị cần tìm, nhưng ở bước tiếp theo lại xuất hiện a. - Không có điều kiện của a. - Không lập luận mà lại đi tìm BC (2; 3; 4; 8) - Không lập luận theo điều kiện đề bài mà đưa ra kết quả. Biện pháp: Với những sai sót ở ví dụ 2 này, giáo viên khắc phục bằng cách: - Giải một bài toán mẫu tương tự. - Cho các em tự tìm ra các bước giải - Giáo viên lập thành thuật toán: B1: Gọi a ..( điều kiện của a ) B2: Lập luận để có a là BC(.) hoặc là BCNN() B3: Tìm BC(.) hoặc BCNN(..) B4: Lập luận theo điều kiện để chọn kết quả. - Cho các em thực hành tập giải toán nhiều lần. e) Sai sót do không biết cách trình bày hoặc trình bày tuỳ tiện, máy móc: Đối với hai bài toán giải bằng lời liên quan đến bội và ước, học sinh không biết cách giải hoặc không nắm vững cách trình bày nên nhiều em trình bày lẫn lộn, tuỳ tiện giữa các bước làm mất đi tính lôgích trong lời giải, hoặc bỏ đi một vài bước trong bài giải làm cho bài giải thiếu tính chặt chẽ. Đôi lúc do lập luận nhầm lẫn giữa hai bài toán này nên học sinh không làm được bài. Một điều quan trọng hơn nữa là nhiều em kể cả học sinh khá giỏi vẫn rất máy móc, rập khuôn theo bài giải mẫu, thuật toán có sẵn mà quên mất rằng đề bài đã đưa ra không theo bài toán mẫu. Ví dụ 7. Một số sách nếu xếp thành từng bó 10 quyển, 12 quyển,15 quyển đều thừa 1 quyển. Tính số sách đó biết rằng số sách trong khoảng từ 100 đến 150. Sai sót: Do không đọc kỹ đề, học sinh cứ thế theo bài toán mẫu rập khuôn vào mà giải, không để ý bài toán cho khi xếp thừa 1 quyển để lập luận bài toán theo chiều hướng khác. Biện pháp: Đối với dạng mở rộng này, giáo viên cần nhắc nhở kỹ cho các em không phải khi nào cũng rập khuôn đúng mẫu mà ta phải linh hoạt lập luận theo đề bài toán, đi theo đúng hướng chặt chẽ theo đề bài. Chẳng hạn ở ví dụ trên ta phải biết số sách (a) đó xếp 10 quyển, 12quyển, 15 quyển đều thừa 1 quyển nghĩa là nếu bớt 1 quyển thì số sách đó sẽ được chia đều cho 10, cho 12, cho 15 a-1 là BC ( 10; 12; 15) Tìm a - 1 rồi mới tìm a - Giáo viên mở rộng ra cho học sinh: Nếu trường hợp bài toán cho tương tự nhưng thay vì thừa 1 thì bài toán lại cho thiếu 1 thì sao ? Cách giải tương tự chỉ thay vào a – 1 là a + 1 là BC (10,12,15) Tóm lại: Trong quá trình giải và trình bày cách giải bài toán về bội và ước của học sinh lớp 6 còn nhiều sai sót và nhầm lẫn trong các ký hiệu toán học, cách lập luận, hoặc do không cẩn thận Phần trình bày trên chỉ là một số ví dụ điển hình cho mỗi loại sai sót và những biện pháp chủ quan của bản thân rút ra trong quá trình giảng dạy. Trong quá trình giảng dạy, để giúp học sinh nắm được cách trình bày từng dạng toán cụ thể đó, khắc phục dần những hạn chế, yếu kém trong việc giải toán của bản thân học sinh. - Trong các tiết dạy nhất là tiết luyện tập đã ghi lại các sai sót mà học sinh gặp phải để có kế hoạch bổ sung kịp thời cho các em, chỉ rõ sai sót cụ thể cho cần rèn luyện và giáo viên kiểm tra lại. - Thông qua tiết luyện tập giáo viên cần phân dạng bài tập cụ thể và mỗi dạng đều có bài giải trình bày mẫu rõ ràng cho các em tập giải theo bằng các bài tập “rập khuôn” với dạng bài mẫu sau đó mới phát triển thành các dạng bài tập liên quan đến dạng vừa giải. - Kiên trì, bền bỉ rèn luyện cho các em các dạng toán trên trong suốt năm học. - Xác định vốn kiến thức cơ bản, tối thiểu của từng bài trong chương, khắc sâu các dạng bài toán và cách giải qua từng bài học và hệ thống hoá kiến thức để học sinh nắm được qua các tiết ôn tập. - Gần gũi, chan hòa với học sinh, gây hứng thú trong mỗi tiết học, qua từng bài toán, qua các trò chơi vui học. - Có biện pháp thưởng phạt công minh, thích đáng qua việc kiểm tra bài tập của học sinh trên lớp, trên vở, kiểm tra viết, bài tập về nhà bằng cách ghi điểm học tập cụ thể, công khai. - Đối với những dạng toán cơ bản, giáo viên ra thêm bài tập để học sinh về nhà giải thêm. Lưu ý những em học sinh yếu: nếu mắc phải những sai sót nào thì giáo viên ra bài tập để sửa sai dạng đó có sự kiểm tra, sửa sai kịp thời. KẾT QUẢ NGHIÊN CỨU: Đề tài đã được vận dụng thực nghiệm đối với học sinh diện đại trà lớp 6 trường THCS Phan Bội Châu mà tôi đã dạy và đã đạt được những kết quả nhất định trong việc giải toán liên quan đến bội và ước. *Kết quả cụ thể như sau: Năm học 2015-2016 2016-2017 2017-2018 Chưa áp dụng Áp dụng Chưa áp dụng Áp dụng Chưa áp dụng Áp dụng Số lượng 34/43 39/43 73/90 82/90 75/90 85/90 Tỉ lệ % từ TB trở lên 79,1% 90,7% 82,2% 91,1% 83,3% 94,4% Năm học Nội dung Tỷ lệ 2017 – 2018 + Có kỹ năng giải bài thành thạo, lập luận lôgíc, chặt chẽ + Giải bài tập chưa tốt còn sai sót 90% 10% III. MẶT TÍCH CỰC VÀ HẠN CHẾ CỦA SKKN: 1/ Mặt tích cực: Phát huy tính tích cực học toán của học sinh, giúp học sinh hứng thú hơn trong mỗi giờ toán. 2/ Mặt hạn chế: Nội dung đề tài khá rộng. Đề tài còn mang tính chủ quan của bản thân. IV. BÀI HỌC KINH NGHIỆM: Đề tài này tôi đã áp dụng tương đối thành công trong quá trình giảng dạy: - Học sinh nắm vững các kiến thức và khắc sâu được kiến thức cho các em. - Rèn luyện khả năng phân tích và tìm mối các quan hệ giữa các bài toán. - Tăng khả năng tính toán, suy luận logic, lập luận chặt chẽ. - Định hướng được các dạng bài toán để thực hiện. - Tăng khả năng sáng tạo và khả năng tự học của các em. - Thấy được hiệu quả của đề tài mang lại. V. KẾT LUẬN: Đề tài đã được thực hiện và đảm bảo những yêu cầu đề ra. Đề tài đã chỉ ra những sai sót mà học sinh thường mắc phải khi giải toán liên quan đến bội và ước, nguyên nhân dẫn đến những sai sót đó và những biện pháp thiết thực, cụ thể với từng trường hợp sai sót của từng dạng toán, qua đó giúp học sinh khắc phục dần các sai sót để giải các bài toán tốt hơn. Những biện pháp mà đề tài nêu ra ở đây không hẳn là hoàn toàn mới lạ nhưng nó thể hiện được các biện pháp cụ thể, thiết thực khắc phục cách giải trong từng dạng bài toán hay sai sót khi học sinh giải toán mà nhiều thầy cô không chú ý hoặc không thực hiện đầy đủ và cụ thể nên không giúp học sinh rèn giải dạng toán nói trên. Hơn nữa đề tài đòi hỏi phải thực hiện bền bỉ, kiên trì thì mới có hiệu quả thiết thực nhất là với các em học sinh yếu. Trong quá trình thực hiện đề tài có sự góp ý của các đồng nghiệp, tạo điều kiện của tổ, của trường. Tôi xin cảm ơn các ý kiến đóng góp chân thành của các đồng nghiệp đã giúp tôi hoàn thành đề tài. Quận 12, ngày 20 tháng 02 năm 2019 Người viết Nguyễn Thị Ngọc Mỹ
File đính kèm:
sang_kien_kinh_nghiem_mot_so_bien_phap_khac_phuc_nhung_sai_s.doc