Sáng kiến kinh nghiệm Giúp học sinh phát hiện và tránh sai lầm trong khi giải toán về căn bậc hai
1/MỤC ĐÍCH :
Môn toán là một bộ môn khoa học tự nhiên . Nó đóng vai trò rất quan trọng trong thực tiễn cuộc sống , ứng dụng rất nhiều trong mọi lĩnh vực khác nhau như : Kinh tế, tài chính, kế toán .... là tiền đề cơ bản cho các bộ môn khoa học tự nhiên khác. Vì vậy việc giảng dạy môn Toán ở các trường THCS nói chung và môn Toán lớp 9 nói riêng là một vấn đề hết sức quan trọng. Vì thế, để đáp ứng được nhu cầu giảng dạy theo phương pháp dạy học (PPDH) mới hiện nay giáo viên (GV) cần có sự đầu tư, làm việc và suy nghĩ nhiều hơn vì thế chúng ta cần phải nghiên cứu và đây là vấn đề cần thiết chúng ta phải thực hiện nghiêm túc.
- Hiện nay mục tiêu giáo dục cấp THCS đã được mở rộng, các kiến thức và kỹ năng được hình thành và củng cố để tạo ra 4 năng lực chủ yếu :
+ Năng lực hành động
+ Năng lực thích ứng
+ Năng lực cùng chung sống và làm việc
+ Năng lực tự khẳng định mình.
Tóm tắt nội dung tài liệu: Sáng kiến kinh nghiệm Giúp học sinh phát hiện và tránh sai lầm trong khi giải toán về căn bậc hai

giải đúng : cũng từ chú ý về căn bậc hai số học, ta có x = 152. Vậy x =225. e) Sai trong thuật ngữ khai phương : Ví dụ 5 : Tính - - Học sinh hiểu ngay được rằng phép toán khai phương chính là phép toán tìm căn bậc hai số học của số không âm nên học sinh sẽ nghĩ - là một căn bậc hai âm của số dương 25, cho nên sẽ dẫn tới lời giải sai như sau : - = 5 và - 5 Lời giải đúng là : - = -5 g) Sai trong khi sử dụng căn thức bậc hai và hằng đẳng thức = | A| ∙ Căn thức bậc hai : Với A là một biểu thức đại số, người ta gọi là căn thức bậc hai của A, còn A được gọi là biểu thức lấy căn hay biểu thức dưới dấu căn. xác định (hay có nghĩa ) khi A lấy giá trị không âm. ∙ Hằng đẳng thức : = | A| Cho biết mối liên hệ giữa phép khai phương và phép bình phương. Ví dụ 6 : Hãy bình phương số -8 rồi khai phương kết quả vừa tìm được. Học sinh với vốn hiểu biết của mình sẽ có lời giải sau (lời giải sai) : (-8)2 = 64 , nên khai phương số 64 lại bằng -8 Lời giải đúng : (-8)2 = 64 và = 8. Mối liên hệ = | a| cho thấy “ Bình phương một số, rồi khai phương kết quả đó, chưa chắc sẽ được số ban đầu” Ví dụ 7 : Với a2 = A thì chưa chắc đã bằng a Cụ thể ta có (-5)2 = 25 nhưng = 5; rất nhiều ví dụ tương tự đã khảng định được kết quả như ở trên. 2.2/ Sai lầm trong các kỹ năng tính toán : a) Sai lầm trong việc xác định điều kiện tồn tại của căn bậc hai : Ví dụ 1 : Tìm giá trị nhỏ nhất của : A = x + * Lời giải sai : A= x + = (x++ ) - = (+)2 ≥ - Vậy min A = -. * Phân tích sai lầm : Sau khi chứng minh f(x) ≥ -, chưa chỉ ra trường hợp xảy ra f(x) = -. Xảy ra khi và chỉ khi = -(vô lý). * Lời giải đúng : Để tồn tại thì x ≥0. Do đó A = x + ≥ 0 hay min A = 0 khi và chỉ khi x=0 Ví dụ 2 : Tìm x, biết : - 6 = 0 * Lời giải sai : - 6 = 0 2(1-x) = 6 1- x = 3 x = - 2. * Phân tích sai lầm : Học sinh có thể chưa nắm vững được chú ý sau : Một cách tổng quát, với A là một biểu thức ta có = | A|, có nghĩa là : = A nếu A ≥ 0 ( tức là A lấy giá trị không âm ); = -A nếu A < 0 ( tức là A lấy giá trị âm ). Như thế theo lời giải trên sẽ bị mất nghiệm. * Lời giải đúng : - 6 = 0 | 1- x | = 3. Ta phải đi giải hai phương trình sau : 1) 1- x = 3 x = -2 2) 1- x = -3 x = 4. Vậy ta tìm được hai giá trị của x là x1= -2 và x2= 4. Ví dụ 3 : Tìm x sao cho B có giá trị là 16. B = - + + với x ≥ -1 * Lời giải sai : B = 4-3+ 2+ B = 4 16 = 4 4 = 42 = ()2 hay 16 = 16 = | x+ 1| Nên ta phải đi giải hai phương trình sau : 1) 16 = x + 1 x = 15 2) 16 = -(x+1) x = - 17. * Phân tích sai lầm : Với cách giải trên ta được hai giá trị của x là x1= 15 và x2=-17 nhưng chỉ có giá trị x1 = 15 là thoả mãn, còn giá trị x2= -17 không đúng. Đâu là nguyên nhân của sự sai lầm đó ? Chính là sự áp dụng quá rập khuôn vào công thức mà không để ý đến điều kiện đã cho của bài toán, với x ≥ -1 thì các biểu thức trong căn luôn tồn tại nên không cần đưa ra biểu thức chứa dấu giá trị tuyệt đối nữa.! * Lời giải đúng : B = 4-3+ 2+ B = 4 16 = 4 4 = (do x ≥ -1) 16 = x + 1. Suy ra x = 15. b) Sai lầm trong kỹ năng biến đổi : Trong khi học sinh thực hiện phép tính các em có đôi khi bỏ qua các dấu của số hoặc chiều của bất đẳng thức dẫn đến giải bài toán bị sai. Ví dụ 4 : Tìm x, biết : (4- . * Lời giải sai : (4- 2x < ( chia cả hai vế cho 4-) x < . * Phân tích sai lầm : Nhìn qua thì thấy học sinh giải đúng và không có vấn đề gì. Học sinh khi nhìn thấy bài toán này thấy bài toán không khó nên đã chủ quan không để ý đến dấu của bất đẳng thức : “Khi nhân hoặc chia cả hai vế của bất đẳng thức với cùng một số âm thì bất đẳng thức đổi chiều”. Do đó rõ ràng sai ở chỗ học sinh đã bỏ qua việc so sánh 4 và cho nên mới bỏ qua biểu thức 4 - là số âm, dẫn tới lời giải sai. * Lời giải đúng : Vì 4 = < nên 4 - < 0, do đó ta có (4- 2x > x > . Ví dụ 5 : Rút gọn biểu thức : * Lời giải sai : = = x - . * Phân tích sai lầm : Rõ ràng nếu x = - thì x + = 0, khi đó biểu thức sẽ không tồn tại. Mặc dù kết quả giải được của học sinh đó không sai, nhưng sai trong lúc giải vì không có căn cứ lập luận, vì vậy biểu thức trên có thể không tồn tại thì làm sao có thể có kết quả được. * Lời giải đúng : Biểu thức đó là một phân thức, để phân thức tồn tại thì cần phải có x + ≠ 0 hay x ≠ -. Khi đó ta có = = x - (với x ≠ -). Ví dụ 6 : Cho biểu thức : Q = với x ≠ 1, x > 0 a) Rút gọn Q b) Tìm x để Q > -1. Giải : a) Q = Q = - Q = Q = = Q = = Q = - b) * Lời giải sai : Q > -1 nên ta có - > -1 3 > 1+ 2 > 4 > x hay x < 4. Vậy với x < 4 thì Q < -1. * Phân tích sai lầm : Học sinh đã bỏ dấu âm ở cả hai vế của bất đẳng thức vì thế có được bất đẳng thức mới với hai vế đều dương nên kết quả của bài toán dẫn đến sai. * Lời giải đúng : Q > -1 nên ta có - > -1 3 > 2 x > 4. Vậy với x > 4 thì Q > - 1. 3/ NHỮNG PHƯƠNG PHÁP GIẢI TOÁN VỀ CĂN BẬC HAI : 3.1/ Xét thuật ngữ toán học : Vấn đề này không khó dễ dàng ta có thể khắc phục được nhược điểm này của học sinh ( GV: Có thể áp dụng vào giảng dạy hằng ngày bằng cách nhắc nhở và đặt câu hỏi vấn đáp trả lời). 3.2/ Xét biểu thức phụ có liên quan : Ví dụ 1 : Với a > 0, b > 0 hãy chứng minh < Giải : Ta đi so sánh hai biểu thức sau : a + b và (+ )2 Ta có : (+ )2 = a+ b + 2 Suy ra a + b < (+ )2 do đó ta khai căn hai vế ta được : 0, b > 0 nên ta được : < * Như vậy trong bài toán này muốn so sánh được với thì ta phải đi so sánh hai biểu thức khác có liên quan và biết được quan hệ thứ tự của chúng, do đó biểu thức liên quan đó ta gọi là biểu thức phụ. Ví dụ 2 : Tìm giá trị nhỏ nhất, lớn nhất của biểu thức A : A = Giải : Ta phải có |x| ≤ 3. Dễ thấy A > 0 . Ta xét biểu thức phụ sau : B = 2- Ta có : 0 ≤ ≤ => - ≤- ≤ 0 => 2- ≤ 2 - ≤ 2 giá trị nhỏ nhất của B = 2- = x = 0 Khi đó giá trị lớn nhất của A = = 2+ . Giá trị lớn nhất của B = 2 khi và chỉ khi = 0 x = , khi đó giá trị nhỏ nhất của A = = . * Nhận xét : Trong ví dụ trên, để tìm được giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A, ta phải đi xét một biểu thức phụ . 3.3. Vận dụng các hệ thức biến đổi đã học : Giáo viên chú ý cho học sinh biến đổi và thực hiện các bài toán về căn bậc hai bằng cách sử dụng các hệ thức và công thức đã học : Hằng đẳng thức, Quy tắc khai phương một tích, quy tắc nhân các căn bậc hai, quy tắc khai phương một thương, quy tắc chia hai căn bậc hai, đưa thừa số ra ngoài dấu căn, đưa thừa số vào trong dấu căn, Khử mẫu của biểu thức lấy căn, trục căn thức ở mẫu Ngoài các hệ thức đã nêu ở trên, trong khi tính toán học sinh gặp những bài toán có liên quan đến căn bậc hai ở biểu thức, nhưng bài toán lại yêu cầu đi tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức đã cho. Hay yêu cầu đi tìm giá trị của một tham số nào đó để biểu thức đó luôn âm hoặc luôn dương hoặc bằng 0 hoặc bằng một giá trị nào đó thì giáo viên cần phải nắm vững nội dung kiến thức sao cho khi hướng dẫn học sinh thực hiện nhẹ nhàng mà học sinh vẫn hiểu được bài toán đó . Ví dụ 1 : Cho biểu thức : P = với a > 0 và a ≠ 1. a) Rút gọn biểu thức P; b) Tìm giá trị của a để P < 0 Giải : a) P = = = = = . Vậy P = với a > 0 và a ≠ 1. b) Do a > 0 và a ≠ 1 nên P < 0 khi và chỉ khi 1. Ví dụ 2 : Tìm giá trị lớn nhất của biểu thức A : A = + biết x + y = 4 Giải : Ta có A2 = ( x-1) + (y - 2) + 2 = = (x + y) - 3 + 2= 1+ 2 Ta lại có 2 ≤ (x -1) + (y- 2) = 1 Nên A2 ≤ 2 => Giá trị lớn nhất của A = khi và chỉ khi . Trên đây là một số phương pháp giải toán về căn bậc hai và những sai lầm mà học sinh hay mắc phải, xong trong quá trình hướng dẫn học sinh giải bài tập, giáo viên cần phân tích kỹ đề bài để học sinh tìm được phương pháp giải phù hợp, tránh lập luận sai hoặc hiểu sai đầu bài sẽ dẫn đến kết quả không chính xác. 4/ KẾT QUẢ THỰC HIỆN : Qua thực tế giảng dạy chương I- môn đại số 9 năm học 2010-2011 này. Sau khi xây dựng đề cương chi tiết của sáng kiến kinh nghiệm được rút ra từ năm học 2007-2008 tôi đã vận dụng vào các giờ dạy ở các của khối 9 chủ yếu vào các tiết luyện tập, ôn tập. Qua việc khảo sát chấm chữa các bài kiểm tra tôi nhận thấy rằng tỉ lệ bài tập học sinh giải đúng tăng lên. Cụ thể : Bài kiểm tra 15 phút : Tổng số 40 em Số bài kiểm tra học sinh giải đúng là 38 em chiếm 95%. (ở năm học 2007-2008 là 78%) Tuy mới dừng lại ở các bài tập chủ yếu mang tính áp dụng nhưng hiệu quả đem lại cũng đã phản ánh phần nào hướng đi đúng. Bài kiểm tra chương I : Tổng số 40 em Số bài kiểm tra học sinh giải đúng là 36 em chiếm 90% (ở năm học 2007-2008 là 68%) các bài tập đã có độ khó, cần suy luận và tư duy cao. Như vậy sau khi tôi phân tích kỹ các sai lầm mà học sinh thường mắc phải trong khi giải bài toán về căn bậc hai thì số học sinh giải đúng bài tập tăng lên, số học sinh mắc sai lầm khi lập luận tìm lời giải giảm đi nhiều. Từ đó chất lượng dạy và học môn Đại số 9 nói riêng và môn Toán 9 nói chung được nâng lên. 5/ BÀI HỌC KINH NGHIỆM VÀ GIẢI PHÁP THỰC HIỆN : Qua quá trình giảng dạy bộ môn Toán, qua việc nghiên cứu phương án giúp học sinh tránh sai lầm khi giải toán về căn bậc hai trong chương I-Đại số 9, tôi đã rút ra một số kinh nghiệm như sau : * Về phía giáo viên : - Người thầy phải không ngừng học hỏi, nhiệt tình trong giảng dạy, quan tâm đến chất lượng của từng học sinh, nắm vững được đặc điểm tâm sinh lý của từng đối tượng học sinh và phải hiểu được gia cảnh cũng như khả năng tiếp thu của học sinh, từ đó tìm ra phương pháp dạy học hợp lý theo sát từng đối tượng học sinh. Đồng thời trong khi dạy các tiết học luyện tập, ôn tập giáo viên cần chỉ rõ những sai lầm mà học sinh thường mắc phải, phân tích kĩ các lập luận sai để học sinh ghi nhớ và rút kinh nghiệm trong khi làm các bài tập tiếp theo. Sau đó giáo viên cần tổng hợp đưa ra phương pháp giải cho từng loại bài để học sinh giải bài tập dễ dàng hơn. - Thông qua các phương án và phương pháp trên thì giáo viên cần phải nghiêm khắc, uốn nắn những sai sót mà học sinh mắc phải, đồng thời động viên kịp thời khi các em làm bài tập tốt nhằm gây hứng thú học tập cho các em, đặc biệt lôi cuốn được đại đa số các em khác hăng hái vào công việc. - Giáo viên cần thường xuyên trao đổi với đồng nghiệp để học hỏi và rút ra kinh nghiệm cho bản thân, vận dụng phương pháp dạy học phù hợp với nhận thức của học sinh, không ngừng đổi mới phương pháp giảng dạy để nâng cao chất lượng dạy và học. - Giáo viên phải chịu hy sinh một số lợi ích riêng đặc biệt về thời gian để bố trí các buổi phụ đạo cho học sinh và chú ý lấp lại những lỗ hỏng kiến thức cho các em. * Về phía học sinh : - Bản thân học sinh phải thực sự cố gắng, có ý thức tự học tự rèn, kiên trì và chịu khó trong quá trình học tập. - Trong giờ học trên lớp cần nắm vững phần lý thuyết hiểu được bản chất của vấn đề, có kỹ năng vận dụng tốt lí thuyết vào giải bài tập. Từ đó học sinh mới có thể tránh được những sai lầm khi giải toán. - Phải có đầy đủ các phương tiện học tập, đồ dùng học tập đặc biệt là máy tính điện tử bỏ túi Casio f(x) từ 220 trở lên; giành nhiều thời gian cho việc làm bài tập ở nhà thường xuyên trao đổi, thảo luận cùng bạn bè để nâng cao kiến thức cho bản thân. V/ KẾT LUẬN : Phần kiến thức về căn bậc hai trong chương I- Đại số 9 rất rộng và sâu, tương đối khó với học sinh, có thể nói nó có sự liên quan và mang tính thực tiễn rất cao, bài tập và kiến thức rộng, nhiều. Qua việc giảng dạy thực tế tôi nhận thấy để dạy học được tốt phần chương I- Đại số 9 thì cần phải nắm vững những sai lầm của học sinh thường mắc phải và bên cạnh đó học sinh cũng phải có đầy đủ kiến thức cũ, phải có đầu óc tổng quát, lôgic do vậy sẽ có nhiều học sinh cảm thấy khó học phần kiến thức này. Để nâng cao chất lượng dạy và học giúp học sinh hứng thú học tập môn Toán nói chung và phần chương I- Đại số 9 nói riêng thì mỗi giáo viên phải tích luỹ kiến thức, phải có phương pháp giảng dạy tích cực, củng cố kiến thức cũ cho học sinh và là cây cầu nối linh hoạt có hồn giữa kiến thức và học sinh. Với sáng kiến “Giúp học sinh phát hiện và tránh sai lầm trong khi giải toán về căn bậc hai” tôi đã cố gắng trình bày các sai lầm của học sinh thường mắc phải một cách tổng quát nhất, bên cạnh đó tôi đi phân tích các điểm mới và khó trong phần kiến thức này so với khả năng tiếp thu của học sinh để giáo viên có khả năng phát hiện ra những sai lầm của học sinh để từ đó định hướng và đưa ra được hướng cũng như biện pháp khắc phục các sai lầm đó. Bên cạnh đó tôi luôn phân tích các sai lầm của học sinh và nêu ra các phương pháp khắc phục và định hướng dạy học ở từng dạng cơ bản để nâng cao cách nhìn nhận của học sinh qua đó giáo viên có thể giải quyết vấn đề mà học sinh mắc phải một cách dễ hiểu. Ngoài ra tôi còn đưa ra một số bài tập tiêu biểu thông qua các ví dụ để các em có thể thực hành kỹ năng của mình. Vì thời gian nghiên cứu đề tài có hạn và tôi chỉ nghiên cứu ở một phạm vi. Vì vậy tôi chỉ đưa ra những vấn đề cơ bản nhất để áp dụng vào trong năm học này qua sự đút rút của các năm học trước đã dạy. Tôi xin được đề xuất một số ý nhỏ như sau nhằm nâng cao chất lượng dạy và học của giáo viên và học sinh : + Giáo viên cần nghiên cứu kĩ nội dung và chương trình sách giáo khoa, soạn giáo án cụ thể và chi tiết, thiết kế đồ dùng dạy học và TBDH sao cho sinh động và thu hút đối tượng học sinh tham gia. + Giáo viên cần tích cực học hỏi và tham gia chuyên đề, hội thảo của tổ, nhóm và nhà trường, tham gia tích cực và nghiên cứu tài liệu về bồi dưỡng thường xuyên. + Học sinh cần học kĩ lý thuyết và cố gắng hiểu kĩ kiến thức ngay trên lớp. + Học sinh về nhà tích cực làm bài tập đầy đủ, phân phối thời gian hợp lý. + Gia đình và các tổ chức đoàn thể xã hội cần quan tâm hơn nữa và trách nhiệm hơn nữa tới việc học tập của con em mình. Vì thời gian nghiên cứu sáng kiến có hạn và tối chỉ nghiên cứu ở một phạm vi. Vì vậy tôi chỉ đưa ra những vấn đề cơ bản nhất để áp dụng vào trong năm học này qua sự đúc rút của các năm học trước đã dạy. Tôi xin được đề xuất một số ý nhỏ như sau nhằm nâng cao chất lượng dạy và học của giáo viên và học sinh : - Giáo viên cần nghiên cứu kĩ nội dung và chương trình sách giáo khoa, soạn giáo án cụ thể và chi tiết, thiết kế đồ dùng dạy học và TBDH sao cho sinh động và thu hút đối tượng học sinh tham gia. - Giáo viên cần tích cực học hỏi và tham gia chuyên đề, hội thảo của tổ, nhóm và nhà trường, tham gia tích cực và nghiên cứu tài liệu về bồi dưỡng thường xuyên. - Học sinh cần học kỹ lý thuyết và cố gắng hiểu kĩ kiến thức ngay trên lớp. - Học sinh về nhà tích cực làm bài tập đầy đủ, phân phối thời gian hợp lý. - Gia đình học sinh và các tổ chức đoàn thể xã hội cần quan tâm hơn nữa và trách nhiệm hơn nữa tới việc học tập của con em mình. Vì khả năng có hạn, kinh nghiệm giảng dạy môn Toán 9 chưa nhiều, tầm quan sát tổng thể chưa cao, lại nghiên cứu trong một thời gian ngắn, nên khó tránh khỏi thiếu sót và khiếm khuyết. Rất mong được lãnh đạo và đồng nghiệp chỉ bảo, giúp đỡ và bổ xung cho tôi để sáng kiến được đầy đủ hơn có thể vận dụng được tốt và có chất lượng trong những năm học sau. Tôi xin chân thành cám ơn !
File đính kèm:
sang_kien_kinh_nghiem_giup_hoc_sinh_phat_hien_va_tranh_sai_l.doc